Normalizers of primitive permutation groups
نویسندگان
چکیده
منابع مشابه
The Computation of Normalizers in Permutation Groups
The general problem of computing the normalizer, in a finite permutat ion group G, of a subgroup H has long been recognized as being unusually difficult to solve efficiently. The corresponding problem for centralizers is much easier, although this too has some bad cases. The solution to the centralizer problem is relatively simple and probably difficult to improve upon, whereas there seems to b...
متن کاملDistinguishing Primitive Permutation Groups
Let G be a permutation group acting on a set V . A partition π of V is distinguishing if the only element of G that fixes each cell of π is the identity. The distinguishing number of G is the minimum number of cells in a distinguishing partition. We prove that if G is a primitive permutation group and |V | ≥ 336, its distinguishing number is two.
متن کاملOn the Orders of Primitive Permutation Groups
The problem of bounding the order of a permutation group G in terms of its degree n was one of the central problems of 19th century group theory (see [4]). It is closely related to the 1860 Grand Prix problem of the Paris Academy, but its history goes in fact much further back (see e.g. [3], [1] and [10]). The heart of the problem is of course the case where G is a primitive group. The best res...
متن کاملPrimitive permutation groups of bounded orbital diameter
We give a description of infinite families of finite primitive permutation groups for which there is a uniform finite upper bound on the diameter of all orbital graphs. This is equivalent to describing families of finite permutation groups such that every ultraproduct of the family is primitive. A key result is that, in the almost simple case with socle of fixed Lie rank, apart from very specif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2017
ISSN: 0001-8708
DOI: 10.1016/j.aim.2017.02.012